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Abstract
Introduction: Adults can represent numerical information in nonsymbolic and sym-
bolic formats and flexibly switch between the two. While some studies suggest a 
strong link between the two number representation systems (e.g., Piazza, Izard, Pinel, 
Le Bihan, & Dehaene, 2004 Neuron, 44(3), 547), other studies show evidence against 
the strong-link hypothesis (e.g., Lyons, Ansari, & Beilock, 2012 Journal of Experimental 
Psychology: General, 141(4), 635). This inconsistency could arise from the relation be-
tween task demands and the closeness of the link between the two number 
systems.
Methods: We used a passive viewing task and event-related potentials (ERP) to ex-
amine the temporal dynamics of the implicit integration between the nonsymbolic 
and symbolic systems. We focused on two ERP components over posterior scalp 
sites that were found to be sensitive to numerical distances and ratio differences in 
both numerical formats: a negative component that peaks around 170 ms poststimu-
lus (N1) and a positive component that peaks around 200 ms poststimulus (P2p). We 
examined adults’ (n = 55) ERPs when they were passively viewing simultaneously 
presented dot quantities and Arabic numerals (i.e., nonsymbolic and symbolic nu-
merical information) in the double-digit range. For each stimulus, the nonsymbolic 
and symbolic content either matched or mismatched in number. We also asked each 
participant to estimate dot quantities in a separate behavioral task and observed that 
they tended to underestimate the actual dot quantities, suggesting a need to adjust 
the match between nonsymbolic and symbolic information to reflect the perceived 
quantity of the nonsymbolic information.
Results: Using this adjustment, participants showed greater N1 and P2p amplitudes 
when perceived dot quantities matched Arabic numerals than when there was a mis-
match. However, no differences were found between the unadjusted match and mis-
match conditions.
Conclusion: Our findings suggest that adults rapidly integrate nonsymbolic and sym-
bolic formats of double-digit numbers, but evidence of such integration is best ob-
served when the perceived (rather than veridical) dot quantity is considered.
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1  | INTRODUC TION

Even though we use mathematics frequently in our daily lives, it is 
unclear how the knowledge that is required to perform math is rep-
resented in the brain. Previous research has shown that people have 
access to two systems representing numerical information: One is 
an approximate number system (ANS) that represents the numeri-
cal magnitudes from nonsymbolic numbers >4 (e.g., a dot quantity 
containing 23 dots as “twenty-ish”); the other is a symbolic number 
system (SNS) that allows for the representation of exact numerical 
information provided by symbolic numbers (e.g., Arabic numerals or 
number words). While these two systems differ fundamentally in 
their representational capacities, there is evidence to suggest that 
they are also integrated. This study aimed to investigate the context 
in which such integration occurs at the neural level and its underly-
ing temporal dynamics.

1.1 | Features of the approximate and symbolic 
number systems

The acuity of the ANS is typically measured using a nonsymbolic 
number comparison task in which people are presented with two 
dot quantities in different colors and asked which color has more 
dots (Dietrich, Huber, & Nuerk, 2015). The dots are presented too 
briefly for people to count. Therefore, people have to estimate the 
dot quantities to make a judgment. The visual perceptual cues such 
as surface area and dot size are commonly controlled so that the 
number of dots is the only consistent cue across trials. By chang-
ing the ratio between the smaller and larger dot quantities in the 
comparison task, it can be shown that response times and accura-
cies vary as a function of ratio. For example, if the magnitude of the 
ratio is large, for example, four dots versus eight dots (1:2 ratio), re-
sponses tend to be fast and precise, which indicates that a large ratio 
makes the comparison easy. If the magnitude of the ratio is small, 
for example, 15 dots versus 16 dots (15:16 ratio), responses tend to 
be slower than in the easy ratio condition, and the accuracy is typi-
cally lower (Barth, et al., 2003; Cordes, Gelman, Gallistel, & Whalen, 
2001; Pica, Lemer, Izard, & Dehaene, 2004), indicating harder com-
parison. Converging evidence from developmental and comparative 
studies as well as studies with people whose languages do not have 
number words shows ratio-dependent performance on nonsymbolic 
number comparison tasks suggesting a key feature of the ANS: in-
dependence from language (Cantlon, Brannon, Carter, & Pelphrey, 
2006; Izard, Sann, Spelke, & Streri, 2009; Libertus and Brannon, 
2009; Lipton & Spelke, 2003; Nieder, 2009; Pica et al., 2004; Xu & 
Spelke, 2000).

Unlike the ANS, the development of the SNS has a later onset 
and continues to develop into adulthood. The acquisition of symbolic 
numbers starts with learning to recite number words around 2 years 
of age, with gradually increasing understanding of their meaning 
(Fuson, 2012; Wynn, 1990). Building upon the basic symbolic knowl-
edge, children learn conceptual and procedural knowledge of basic 
arithmetic and other advanced math knowledge, such as algebra and 

calculus through both informal and formal math instruction later in 
life. In stark contrast to the ANS, the SNS thus requires language and 
an understanding of a formal symbol system.

1.2 | The mapping between the approximate 
number system and the symbolic number system

Mixed and indirect evidence for a link between the ANS and the SNS 
comes from number comparison tasks involving symbolic number 
stimuli. On one hand, it has long been established that when com-
paring two symbolic numbers, people’s responses are slower when 
the numerical difference, also known as the numerical distance, be-
tween two numbers decreases (Dehaene, Dupoux, & Mehler, 1990; 
Moyer & Landauer, 1967). For instance, judging 5 is smaller than 9 
is easier than judging 5 is smaller than 6. This effect is known as 
the distance effect, and its existence suggests that symbolic number 
comparisons activate corresponding nonsymbolic number represen-
tations because purely symbolic representations of 5 and 9 should 
be as discriminable as 5 and 6. On the other hand, other variants of 
symbolic number comparison tasks have dampened the idea of an 
integration between the ANS and the SNS. Lyons et al. (2012) asked 
adults to perform numerical comparison tasks in which two num-
bers could be both nonsymbolic, both symbolic, or one nonsymbolic 
and one symbolic. They found that the performance in the mixed-
formats condition was worse than the performance in the other two 
single-format conditions no matter whether the two numbers were 
presented simultaneously or sequentially. They attributed the dec-
rement in performance in the mixed-formats condition to a weaker 
integration between nonsymbolic and symbolic numbers compared 
to the within-format integration.

Another way of assessing the link between the ANS and the SNS 
is via nonsymbolic number estimation tasks. In a typical nonsymbolic 
number estimation task, people are presented with a bunch of dots 
and are asked to estimate how many dots there are. The dot quan-
tities are presented too briefly for them to count, and people have 
to rely on their nonsymbolic number representations to make their 
judgments. Meanwhile, people also need to retrieve information 
from their symbolic number knowledge in order to give their verbal 
estimation. Typically, people have precise estimates for small num-
bers, such as 4 and 5. As the numbers get bigger, there is increasingly 
more variation in people’s estimates (Dehaene, Izard, Spelke, & Pica, 
2008; Revkin, Piazza, Izard, Cohen, & Dehaene, 2008). For example, 
when there are six dots in a display, people’s answers are more likely 
to be five, six, or seven dots. It is less likely for them to say that there 
are 20 dots. However, when there are 60 dots in a display, people’s 
answers tend to vary even more, for example, from 40 to 80.

More critically, previous research found that people tend to 
underestimate large quantities in nonsymbolic number estimation 
tasks (Crollen, Castronovo, & Seron, 2011; Izard & Dehaene, 2008; 
Krueger, 1982; Odic, Im, Eisinger, Ly, & Halberda, 2015). For ex-
ample, when presented with 60 dots, people more commonly es-
timate fewer than 60 dots in contrast to estimating more than 60 
dots. In one early study, a large sample of adults was presented 
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with only a single trial (i.e., one dot quantity) ranging from 25 to 
300 dots and was asked to estimate the number of dots (Krueger, 
1982). Underestimation bias was observed for all dot quantities >30. 
This underestimation bias has three important aspects. First, the 
degree of the underestimation increases as the quantity increases 
(e.g., Poulton, 1968, 1975, 1979). In other words, the difference 
between a dot quantity and its estimate is greater if the quantity 
is large compared to when it is small. Second, the underestimation 
bias can be calibrated by being exposed to a reference quantity. In 
one study, adult participants were shown a dot quantity labeled with 
“30” before a dot estimation task. The reference dot quantity either 
contained 25, 30, or 39 dots, which correspondingly induced overes-
timation, linear-like estimation, and underestimation in participants’ 
performance (Izard & Dehaene, 2008). Third, there are individual 
differences in the underestimation bias in adults (Izard & Dehaene, 
2008; Odic et al., 2015) and young children who have acquired sym-
bolic number knowledge (Libertus, Odic, Feigenson, & Halberda, 
2016). Altogether, these behavioral findings suggest that people 
are able to map between the ANS and SNS, but that this mapping 
is not precise and is subject to a systematic underestimation bias. 
Importantly, the behavioral evidence is unclear whether this map-
ping is automatic or only exists when people are forced to provide 
an exact label for a nonsymbolic quantity.

In addition to these behavioral studies, brain imaging studies 
provide evidence of the mapping between the ANS and the SNS, 
suggesting that the parietal lobe is important for both. Using event-
related potentials (ERPs), the P2p component, a positive component 
over posterior parietal scalp sites which peaks around 200 ms after 
stimulus onset, was found to be sensitive to the distance effect in 
both nonsymbolic and symbolic number comparison tasks (Dehaene, 
1996; Libertus, Woldorff, & Brannon, 2007; Temple & Posner, 1998). 
Specifically, the amplitude of the P2p was greater for small dis-
tances than large distances. Other studies using different paradigms 
confirmed this finding (Hsu & Szücs, 2012; Hyde & Spelke, 2009; 
Rubinsten, Dana, Lavro, & Berger, 2013). In fMRI studies, the IPS was 
repeatedly found to be activated in nonsymbolic and symbolic num-
ber comparison tasks (Ansari, Garcia, Lucas, Hamon, & Dhital, 2005; 
Fias, Lammertyn, Reynvoet, Dupont, & Orban, 2003).

However, one critical aspect of the behavioral, ERP and fMRI 
studies reviewed above is that they all required participants to 
make explicit judgments about numbers and/or dot quantities. To 
examine whether a link between the ANS and the SNS depends on 
explicit numerical judgments, it is necessary to use non-numerical 
tasks or no task at all. A recent behavioral study (Liu, Schunn, Fiez, 
& Libertus, 2015) took a step in this direction using a number de-
cision task that was similar to a lexical decision task for word-like 
stimuli. In this number decision task, participants were briefly 
shown an image that contained either an Arabic numeral (two-
digit number) or a letter pair and they were instructed to judge 
whether they saw a valid numeral (i.e., two digits) or not. The nu-
meral/letter pairs were superimposed on top of a dot quantity, 
which the participants could ignore for the number decision task. 
The number of dots either matched or mismatched with the Arabic 

numeral. Participants’ accuracy and response times were better 
for the match trials than the mismatch trials in the Arabic numeral 
condition suggesting that even without explicit judgments about 
numerical magnitudes, participants associated the nonsymbolic 
and symbolic numerical information.

In another study that did not require explicit numerical judg-
ments, brain activation was measured via fMRI as adults were 
adapted to numbers in either nonsymbolic or symbolic format and 
tested with same-format or cross-format novel numbers (Piazza 
et al., 2004). It was found that in the right IPS, the blood oxygen 
level-dependent (BOLD) signal recovery after the presentation of 
the novel numbers was dependent on numerical distance between 
the adapted number and the novel number but invariant to number 
formats. The findings imply that the human brain can automatically 
pick up numerical information in different formats and integrate it. 
However, the BOLD signal recovery in the left IPS was dependent 
on both numerical distance and number formats suggesting that the 
left hemisphere does not automatically integrate information across 
the ANS and the SNS.

Studies that compared the more detailed brain activation pat-
terns for nonsymbolic numbers and symbolic numbers found that 
there was not much overlap between the two formats. For exam-
ple, one fMRI study (Eger et al., 2009) examined participants when 
they were presented with either nonsymbolic or symbolic numbers. 
A multivoxel pattern analysis that used classifiers to identify differ-
ent activation patterns of different quantities within one format in 
IPS revealed high classification accuracies (~77%) in the nonsymbolic 
format compared to the symbolic format (accuracies were ~57%). 
The classification generalization was poor from one format to an-
other. A classifier trained to differentiate quantities within one for-
mat (e.g., Arabic numeral) could not differentiate as well between 
quantities presented in another format (e.g., nonsymbolic numbers). 
Similar results of classification accuracies as well as generalization 
were found in other fMRI studies (Bulthé, De Smedt, & de Beeck, 
2014, 2015; Lyons, Ansari, & Beilock, 2015), suggesting that even 
though IPS is responsive to numerical information in general, non-
symbolic and symbolic numbers are not represented in the same way 
in IPS.

As reviewed above, previous findings provide mixed evidence re-
garding the integration between the ANS and the SNS. In addition, all 
of these studies used fMRI, which limits the conclusions that can be 
drawn from these results. First and foremost, fMRI does not provide 
a good temporal resolution of the underlying brain activity. Thus, it is 
possible that more subtle, short-lived neural signals of integration re-
main unnoticed. Second, the range of numerical stimuli was limited, 
which might have artificially created an illusion of integration. In the 
fMRI studies that used classification methods to examine nonsymbolic 
and symbolic number representations in the IPS (Bulthé et al., 2014, 
2015; Eger et al., 2009; Lyons et al., 2015), the number ranges were 
small and mostly under 10. Piazza et al. (2004) used larger numbers, 
but the number stimuli were rather categorical (small vs. large) instead 
of continuous. Besides, the participants in this study were familiarized 
with example dot quantities of each category and were told the true 
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approximate ranges before the scan sessions, potentially affecting nu-
merical integration.

Here, we designed a passive viewing EEG task, in which the two 
formats of numbers (dot quantities and Arabic numerals) were si-
multaneously presented to participants without an explicit number-
related task. In addition, we included a large, continuous range of 
numbers. Similar to the stimuli used by Liu et al. (2015), the non-
symbolic number either matched or mismatched with the sym-
bolic numbers. In line with previous studies, we examined two ERP 
components over posterior scalp sites that are thought to reflect 
number processing: the N1, the first negative component peaking 
around 150 ms poststimulus, and the P2p, the second posterior pos-
itivity peaking around 200 ms poststimulus (Dehaene, 1996; Hyde 
& Spelke, 2009; Libertus et al., 2007; Rubinsten et al., 2013; Temple 
& Posner, 1998). Furthermore, as the mental representation of non-
symbolic numbers is expected to be imprecise and subject to sys-
tematic estimation biases, we administered a nonsymbolic number 
estimation task. We hypothesized that the N1 and P2p amplitudes 
would show stronger differences between numerical matches and 
mismatches after adjusting for participants’ estimation bias than 
without the adjustment, as previously found in a behavioral study 
(Liu et al., 2015).

2  | METHODS

2.1 | Participants

Sixty-four participants (mean age = 19.3 ± 1.5 years, 34 females, 
61% White, 30% Asian, 3% African American, 6% Other) were re-
cruited from the University of Pittsburgh subject pool and received 
course credits for their participation. All participants provided 
written informed consent before participating in accordance with 
the Declaration of Helsinki and a protocol approved by the local 
Institutional Review Board. Data from nine participants were ex-
cluded because of low quality of behavioral data (i.e., random re-
sponding in the behavioral task, n = 3), excessive EEG artifacts (i.e., 
more than 50% trials in the EEG task being rejected as artifacts, 
n = 5), or failing to complete the EEG (font-change detection) task 
(n = 1). After exclusions, 55 participants remained in the behavioral 
and ERP analysis.

2.2 | Stimuli and tasks

2.2.1 | Behavioral nonsymbolic number 
estimation task

The estimation task was identical to the nonsymbolic number esti-
mation task used by Liu et al. (2015). Briefly, each stimulus consisted 
of a 400-by-400 pixel image comprising a black dot quantity with 
a superimposed, translucent blue, double-digit Arabic numeral, or 
two random capital letters. The font of all numerals and letters was 
set as Arial Black. The background color of the images was white, 
and the background color of the screen was black. We selected 12 

Arabic numerals with a range from 11 to 63, 12 letter pairs, and 24 
dot quantities. The dot quantities and their respective pairings with 
Arabic numerals or letter pairs are listed in Table 1. A script created 
by Dehaene, Izard, and Piazza (2005) generated the dot arrays, with 
half of the images equated on the individual dot size and the other 
half of the images equated for the cumulative surface area of all dots 
to avoid consistent correlations between perceptual features and dot 
quantities. We generated six variations of each quantity with respect 
to the layout and size (three different sizes and two layouts). Dots 
were randomly localized within the 400-by-400 pixel area to gen-
erate different layouts. However, density was not controlled when 
generating different layouts. There were 144 dot arrays in total. For 
each Arabic numeral and corresponding letter pair, three categories 
of images were created: match with dot quantity, mismatch with dot 
quantity where dot quantity < Arabic number, and mismatch with 
dot quantity where dot quantity > Arabic number. In the case of mis-
matches, the ratio between the dot quantity and Arabic numeral was 
always 1.5 (i.e., 3:2 or 2:3). Considering the six variations of each 
dot quantity, for each Arabic numeral or letter pair there were 18 
images. In total, 432 images were created, half of them as dots with 
Arabic numerals and the other half as dots with letters.

Participants were instructed to estimate the quantity of dots 
shown in the image, ignoring the numerals and letters, type in their 
answer, and hit the Enter key to move on to the next trial. Each image 
was presented for 400 ms, followed by a blank response screen 
until the participants responded. Although there was no time limit 
for participants to type in their answer, they were encouraged to 
respond as quickly and accurately as possible. The entire task con-
tained six blocks with 72 trials, each separated by five short breaks. 
The entire task took about 40 min to complete.

2.2.2 | Symbolic integration task with EEG 
acquisition

The stimuli were identical to those used in the behavioral nonsym-
bolic number estimation task, except that there were no letter trials 
and we extended the Arabic numerals and corresponding dot quanti-
ties to cover single digit numerals and more numerals in the 30–40 
range. The latter change was designed to create a more balanced 
“match” and “mismatch” set after accounting for a range of possible 
estimation biases. A complete list of all Arabic numerals and the cor-
responding mismatch quantities can be found in Table 1. As in the 
behavioral non-symbolic number estimation task, the dot quantity 
either matched or mismatched the Arabic numeral. Also, in the mis-
match condition, half of the images were dot quantities less than the 
Arabic numerals and half of the images were dot quantities greater 
than the Arabic numerals. Aside from these images, 27 images with 
the same Arabic numerals but different font (Marker Felt) were cre-
ated for an orthogonal font-change detection task to encourage 
participants’ attentiveness to the stimuli, but avoid explicit number 
processing. However, data from the trials with these images were 
not included in any analysis. The total set of 315 images was repeated 
four times and thus created a set of 1,260 trials for the entire task.
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Each trial started with a fixation cross centered on the screen 
for an average duration of 500 ms (range: 450–550 ms). Immediately 
after the fixation disappeared, a stimulus image was presented 
for a fixed 500 ms duration, followed by a fixed 250 ms fixation. 
Participants were instructed to look at the images and press a key 
on a keypad when they detected a font change in the Arabic numeral 
(11% of all trials). The entire task contained six blocks with 210 tri-
als each separated by five short breaks. The entire task took about 
30 min to complete.

EEG data were recorded throughout the symbolic integration task 
using a 64-channel Brain Vision actiChamp system (Brainproducts, 
Munich, Germany). The sampling rate was set at 1,000 Hz during re-
cording and was resampled at 500 Hz offline. The impedance of all 
electrodes was kept under 5 kΩ. Electrodes were referenced to the 
right mastoid during recording and later algebraically re-referenced 
to an average of the right and left mastoids during offline analysis.

2.3 | Procedure

After obtaining written consent, while the experimenters set up the 
EEG equipment and adjusted the impedance of the electrodes, the 
participants were given the behavioral nonsymbolic number estima-
tion task. After they finished the estimation task, they were given 
a short break, followed by the symbolic integration task with EEG 

acquisition. Finally, they were given a short demographic question-
naire asking about age, gender, major, year in college, and the num-
ber of math classes taken in high school and college.

2.4 | Data analysis

2.4.1 | Behavioral nonsymbolic number 
estimation task

To determine whether participants were using estimation instead of 
counting, we performed a repeated-measures anova and correlation 
analyses to examine the relation between the dot quantities that the 
participants saw and their responses. If participants were paying at-
tention to the task and were responding reasonably, their estimate 
would increase as the dot quantities increase. Moreover, as the dot 
quantities increase, the variability of participants’ estimates should 
also increase (Odic et al., 2015).

As the nonsymbolic number estimation task included both num-
ber and letter trials, we first compared participants’ estimates on 
these trials types. Each participant’s estimates from the number 
and letter trials in the behavioral nonsymbolic number estimation 
task were fitted using separate power functions in PsiMLE 1.0 (Odic 
et al., 2015). PsiMLE is an R-based package that uses a maximum-
likelihood estimation approach to optimize the parameters of 

TABLE  1 Arabic numerals, letters, and dot quantities used in each match and mismatch condition in the behavioral nonsymbolic 
estimation task and the symbolic integration EEG task

Behavioral nonsymbolic estimation task Symbolic integration EEG task

Arabic 
numeral 
(Match) Letter

Mismatch 
Dot < Num

Mismatch 
Dot > Num

Arabic 
Numeral 
(Match)

Perceived 
dot quantity

Mismatch 
Dot < Num

Perceived 
dot quantity

Mismatch 
Dot > Num

Perceived 
dot quantity

11 RC 7 17 6 8.61 4 6.52 9 11.43

13 PH 9 20 7 9.59 5 7.60 10 12.31

17 CF 11 26 8 10.52 5 7.60 12 13.99

21 LR 14 32 9 11.43 6 8.61 14 15.61

25 QX 17 38 28 25.65 18 18.67 42 34.45

28 GM 19 42 29 26.31 19 19.41 44 35.64

32 KJ 21 48 31 27.61 20 20.13 47 37.41

38 XR 25 57 32 28.26 21 20.85 48 37.99

42 YG 28 63 34 29.53 23 22.26 50 39.14

48 JD 32 72 36 30.78 24 22.95 53 40.86

59 PN 39 89 38 32.02 24 22.95 60 44.77

63 FW 42 95 39 32.63 25 23.64 61 45.31

41 33.85 27 24.99 62 45.86

42 34.45 28 25.65 63 46.41

44 35.64 30 26.97 64 46.95

46 36.82 31 27.61 69 49.64

Right panel: The first column represents the Arabic numeral as well as the dot quantities used to create the match trials. The 3rd and 5th column rep-
resent the dot quantities used to create the mismatch trials. The perceived dot quantity of each actual dot quantity used in the symbolic integration 
EEG task was calculated (1) using each participant’s best fitting power function to calculate the perceived dot quantity and (2) average the perceived 
dot quantity for each actual dot quantity across all participants.
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power functions that capture participants’ behavioral responses 
in the nonsymbolic number estimation task. Specifically, PsiMLE 
estimates the scaling factor α, the exponent β of a power function 
y = αxβ, and an extra parameter σ that describes the variability of 
the estimates of each dot quantity given the actual dot quantities 
x and each participant’s responses y with the likelihood function 
L (α,β,σ�x,y)=

n∏
i=1

��
2πα∗xβ ∗σ

�−1
exp

�
−

1

2

�
y−α∗xβ

�2�
α∗xβ ∗σ

�−2�
.

Repeated-measures anovas were used to examine whether the ex-
ponents and scaling factors from number trials differed from the 
exponents and scaling factors from letter trials. There were no 
significant differences between the exponents and scaling factors 
in the number and letter trials (exponent β: F(1,54) = 1.29, p = .26; 
scaling factor α: F(1,54) = 2.44, p = .12). To examine the reliability of 
the behavioral estimation task, we also submitted the exponents and 
scaling factors to a correlational analysis. There were very high pos-
itive correlations for both exponents and scaling factors across the 
number and letter trials (exponent β: r(1,60) = .88, p < .001; scaling 
factor α: r(1,60) = .93, p < .001). Hence, we collapsed across num-
ber and letter trials and fitted power functions for all trials for each 
participant. These power functions were used to adjust for the per-
ceived dot quantities used in the symbolic integration EEG task (see 
below).

2.4.2 | Symbolic integration EEG task

Raw EEG data were processed offline in EEGLab (Delorme & Makeig, 
2004) and ERPLab (Lopez-Calderon & Luck, 2014). The data were 
filtered at 0.1–60 Hz. Four artifact rejection algorithms were used 
to reject trials with eye blinks, horizontal eye movements, motion, 
electromyography (EMG), and other noises: simple voltage thresh-
old detection, peak-to-peak threshold detection, blink detection, 
and step-like artifact detection. The rejection threshold for each 
algorithm was manually set and adjusted slightly based on each 
participant’s data because their overall signal strengths varied sub-
stantially. The range of the thresholds was 80 to 120 μV. For par-
ticipants whose general signal voltage was low (e.g., 90 μV), we used 
a threshold close to the lower boundary (close to 80 μV) and vice 
versa. After artifact rejection, the EEG data were segmented into 
700-ms segments consisting of a 200-ms baseline prior to stimulus 
onset and 500 ms after stimulus onset. Segmented EEG data were 
selectively averaged with respect to each pair of dot quantity and 
Arabic numeral to create ERPs. ERPs were first grouped into match 
and mismatch conditions according to actual dot quantities, as de-
scribed in Table 1. Note that the trials in the embedded font-change 
detection task were excluded from EEG data analysis but were used 
to determine whether participants were attending to the stimuli dur-
ing EEG recording.

Because participants showed large underestimation biases 
on the behavioral nonsymbolic number estimation task, we also 
adjusted the match and mismatch conditions based on each par-
ticipant’s best fitting power function derived from the behavioral 
estimation task. For instance, an image that contained 42 dots and 
the Arabic numeral “28” was originally considered a “mismatch” 

while an image that contained 42 dots and the Arabic numeral “42” 
was considered a “match” before the adjustment. For a participant 
whose power fitting function revealed an estimate of 42 dots as 28 
dots, the 42 dots-28 numeral image was labeled as “match” whereas 
the 42 dots-42 numeral image was labeled as “mismatch” after the 
adjustment. To control for perceptual features of the dot quantities, 
we only used adjusted mismatch trials that contained the same dot 
quantities as the adjusted match trials in the adjusted ERP analysis. 
Based on previous work (Hyde & Spelke, 2009; Libertus et al., 2007), 
we selected two ERP components of interest: N1 (130–200 ms), and 
P2p ERP components (200–250 ms). As ERPs are not highly informa-
tive of spatial information related to brain activation, we focused on 
the overall brain response pattern over a relative large brain region 
that covers several electrodes. Specifically, we selected four elec-
trodes of interest over posterior parietal scalp sites from each hemi-
sphere to obtain enough coverage of the posterior regions that have 
been reported in previous studies (Hyde & Spelke, 2009; Libertus 
et al., 2007). Electrodes P3, P5, PO3, and PO7 were selected from 
the left hemisphere, and electrodes P4, P6, PO4, and PO8 were 
selected from the right. By averaging across each set of four elec-
trodes, two regions of interest for each hemisphere (ROIL and ROIR) 
were formed. The mean amplitude of each component at each of the 
two ROIs was exported from ERPLab for both the no-adjustment 
analysis and the after-adjustment analysis. A two-way (Trial Type, 
Hemisphere) repeated-measures anova was run for overall main ef-
fects and interactions separately for the N1 and P2p components 
and separately for unadjusted and adjusted data.

3  | RESULTS

3.1 | Behavioral results

3.1.1 | Nonsymbolic number estimation task

We first examined participants’ performance in the estimation task 
to obtain personalized quantity estimation parameters to use in the 
ERP analysis. For each participant, we removed estimates that were 
more than three standard deviations from their average estimate 
across all trials to remove extreme estimates (e.g., 500) from the data 
that most likely resulted from typing errors. To show that the par-
ticipants followed the task instruction and estimated dot quantities 
instead of randomly inputting responses, we conducted two correla-
tion analyses on the quality of the estimates. We found a very high 
correlation in all participants, mean correlation coefficient r = .97, 
standard deviation (SD) = 0.02, between the actual dot quantities 
that were presented and participants’ estimates. We also found a 
positive correlation, mean correlation coefficient r = .68, SD = 0.20, 
between the actual dot quantities and the variability in participants’ 
estimates, which is consistent with participants relying on their ap-
proximate number system when making their estimates.

Next, we fitted each participant’s estimates with the best fitting 
power function and obtained the corresponding exponents and scal-
ing factors. We first removed outliers from the estimates of each 
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dot quantity for each participant. For all the trials with the same dot 
quantity, the estimates that were more than three standard devia-
tions above or below the mean were removed. The mean exponent 
was 0.70, SD = 1.3. The mean scaling factor was 2.72, SD = 0.14. 
Each participant’s estimates of the dot quantities as well as the mean 
power fitting curve are shown in Figure 1. As shown in this figure, 
participants exhibited a strong underestimation bias, especially for 
larger dot quantities. We used each participant’s best fitting power 
function to calculate the person’s perceived dot quantity of each ac-
tual dot quantity. Then, we used these estimates to calculate the 
average perceived dot quantities across our entire sample that are 
listed in Table 1 (right panel, columns 2, 4, and 6).

3.1.2 | Symbolic integration EEG task

We analyzed participants’ performance in the font-change detection 
task that was embedded in the symbolic integration EEG task. The 
mean response time was 449 ms, SD = 16 ms. The mean accuracy was 
95%, SD = 6%. Hence, the participants responded to the stimuli with 
a different font quickly and accurately, which confirms that they were 
engaged in this (non-numerical) task through the entire EEG recording.

3.2 | ERP results

Our analyses focused on two ERP components that have been pre-
viously established in the literature (Libertus et al., 2007; Temple 
& Posner, 1998): N1 (130–200 ms) and P2p (200–250 ms). In line 
with previous studies, we concentrated on two ROIs over bilateral 
occipito-parietal scalp sites (Hyde & Spelke, 2009; Libertus et al., 
2007). Unadjusted and adjusted match and mismatch ERP wave-
forms for both ROIs are shown in Figure 2. For unadjusted and 

adjusted data in the N1 and P2p time window, we conducted a 
repeated-measures anova with Trial Type (match vs. mismatch) and 
Hemisphere (left vs. right) as repeated factors (see Table 2 for the 
mean and standard deviation of the ERP amplitudes of each ROI of 
each Trial Type before and after the adjustment).

3.3 | Without adjustment

3.3.1 | N1 (130–200 ms)

The repeated-measures anova showed a significant main effect of 
Hemisphere (F(1,54) = 32.25, p < .001, η2 = 0.37). When averaging 
across the two trial types, the ROIL had higher ERP amplitudes than 
the ROIR (left: M = 0.28 μV, standard error of mean (SE) = 0.33; right: 
M = −1.03 μV, SE = 0.37). No other main effects or interactions were 
significant (ps > .2).

3.3.2 | P2p (200–250 ms)

There were no significant main effects or interactions in the Trial 
Type by Hemisphere repeated-measures anova (all ps > .26).

3.4 | With adjustment

3.4.1 | N1 (130–200 ms)

There was a significant difference between the ERP amplitudes in 
the ROIL and ROIR, F(1,54) = 25.81, p < .001, η2 = 0.323. The ERP 
amplitudes in the ROIL were higher than the ERP amplitudes in the 
ROIR (left: M = 1.75 μV, SE = 0.28; right: M = 1.29 μV, SE = 0.27). We 
also found a significant difference between adjusted match and mis-
match trials across the two ROIs, F(1,54) = 4.93, p = .03, η2 = 0.084. 
The adjusted match trials were higher in amplitude than the ad-
justed mismatch trials (match: M = −0.19 μV, SE = 0.37; mismatch: 
M = −0.65 μV, SE = 0.33). No significant interactions were found be-
tween Trial Type and Hemisphere, F(1,54) = 1.31, p = .26, η2 = 0.024.

3.4.2 | P2p (200–250 ms)

We found a marginally significant difference between adjusted 
match and mismatch trials across the two ROIs, F(1,54) = 3.03, 
p = .087, η2 = 0.053. The adjusted match trials had higher amplitude 
than the adjusted mismatch trials (match: M = 3.71 μV, SE = 0.30; 
mismatch: M = 3.22 μV, SE = 0.33). No other effects were found sig-
nificant, ps > .129.

4  | DISCUSSION

The present study examined the integration between the approxi-
mate number system (ANS) and the symbolic number system (SNS). 
Specifically, the integration between nonsymbolic and symbolic 
formats of numbers in the human brain was examined by asking 

F IGURE  1 The relation between nonsymbolic numerosities 
presented in the behavioral estimation task and participants’ 
mean estimates. The blue line represents the mean power fitting 
function, Y = 2.72 * X0.70, where Y is the predicted perceived dot 
quantity and X is the actual presented dot quantity. The dashed 
lines represent upper boundary and lower boundary of outlier 
removal
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young adults to passively look at matching or mismatching numeri-
cal information in both formats simultaneously while recording their 
EEG. We hypothesized that ERP components that were previously 
found to be sensitive to numerical information should differentiate 
between match and mismatch trials. However, we also know from 
previous research that adults’ estimates of nonsymbolic numerical 
stimuli are biased (Izard & Dehaene, 2008; Krueger, 1982; Odic et al., 
2015) and that therefore an actual match between a nonsymbolic 
numerical stimulus and a symbolic one may not be perceived as such. 

To take estimation biases into account, we collected each partici-
pant’s estimates of nonsymbolic stimuli similar to the ones used in 
the EEG task and adjusted the match and mismatch trials in the EEG 
task according to their behavioral estimation biases.

4.1 | ERP symbolic integration effect

We found significant differences between match and mismatch 
trials over bilateral parietal scalp sites starting as early as 130 ms 

F IGURE  2 The ERP waveforms of match (black lines) and mismatch condition (red lines). (a) The waveforms of the left ROI in the no-
adjustment analysis. (b) The waveforms of the right ROI in the no-adjustment analysis. (c) The waveforms of the left ROI in the adjustment 
analysis. (d) The waveforms of the right ROI in the adjustment analysis. Gray bars: P1 (70–130 ms). Light green bars: N1 (130–200 ms). Light 
blue bars: P2p (200–250 ms). (e, f) Topographic map of the mismatch effect for N1 component (e) and P2p component (f). Left: unadjusted 
data. Right: adjusted data. *p < .05. †p < .1
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poststimulus when perceived rather than actual nonsymbolic quan-
tities were taken into consideration. These findings argue for a rapid 
integration of numerical information across nonsymbolic and sym-
bolic stimuli in the adult brain. The N1 and P2p ERP components 
have been associated with numerical processing in previous studies 
and have been found to be sensitive to numerical distance in both 
nonsymbolic and symbolic stimuli (Dehaene, 1996; Libertus et al., 
2007; Temple & Posner, 1998). Our findings suggest that sensitiv-
ity to numerical information extends beyond explicit numerical pro-
cessing as the participants in our study were passively viewing the 
numerical stimuli. Our findings also suggest that sensitivity to nu-
merical information spans across nonsymbolic and symbolic formats 
of numerical information. Interestingly, the integration of nonsym-
bolic and symbolic numerical formats did not result in a later onset of 
the ERP differences than previous studies focusing on stimuli within 
a given format, suggesting that cross-format numerical integration 
occurs as rapidly as within-format numerical comparison. This fur-
ther implies that the processing of symbolic and nonsymbolic nu-
merical information unfolds in parallel.

However, other research suggests that the P2p ERP compo-
nent may reflect the evaluation of perceptual visual features of 
nonsymbolic numerical stimuli. For example, Gebuis and Reynvoet 
(2013) showed that P2p amplitudes were modulated as a function 
of variation in perceptual cues of dot quantities, such as different 
convex hulls and densities, but that the P2p did not differentiate be-
tween different dot quantities. In the present study, we took two 
steps to avoid systematic perceptual confounds between mismatch 
and match trials. First, our stimuli were created such that each dot 
quantity was used both in mismatch and match trials. Second, as our 
adjustment shifted the alignment between the dot quantities and 
Arabic numerals resulting in a larger number of mismatch trials, we 
intentionally only used the mismatch trials based on the dot quan-
tities used in match trials for each participant in the adjusted ERP 
analysis. For example, for a participant who estimated 42 dots to be 
28 dots, the stimulus showing 42 dots paired with Arabic numeral 
28 was considered a new, adjusted match trial. We then selected 
the corresponding mismatch trials as 42 dots paired with a differ-
ent Arabic numeral (e.g., 42). Therefore, in both our unadjusted and 
adjusted match and mismatch trials, the dot quantities were exactly 

identical and hence any ERP differences cannot result from percep-
tual differences in the nonsymbolic stimuli.

A related question is whether the ERP differences we observed 
may stem from the perceptual differences in Arabic numerals. 
Indeed, in the present study the perceptual features of the Arabic 
numerals were not controlled, neither before nor after adjustment. 
However, if any perceptual difference of the Arabic numerals con-
tributed to the P2p difference we observed after the adjustment, we 
should observe P2p differences in the nonadjusted analysis as well, 
which we did not. Therefore, it is unlikely that the integration be-
tween nonsymbolic and symbolic numerical information observed in 
our study results from systematic variation in perceptual features in 
either stimulus format. Instead, we argue for a rapid brain response 
that is associated with the numerical evaluation and integration of 
both nonsymbolic and symbolic numbers.

4.2 | N1 and P2p amplitude differences

In previous studies, small numerical changes in an adaptation task 
(Hyde & Spelke, 2009) or small numerical distances in a number com-
parison task (Dehaene, 1996; Libertus et al., 2007; Temple & Posner, 
1998) elicited higher P2p amplitudes compared to large changes or 
large distances, respectively. In our study, the P2p amplitude tended 
to be higher for match trials compared with mismatch trials. As the 
numerical distance between the nonsymbolic and symbolic numbers 
is smaller than the numerical distance in the mismatch trials, our P2p 
amplitude finding was in line with previous findings.

Unlike the P2p amplitude, the sensitivity to numerical informa-
tion in the N1 has not been consistent across studies. One study 
found that the N1 amplitude was higher if the numerical distance 
was closer irrespective of number format (Temple & Posner, 1998), 
while another study found that the N1 amplitude was higher if the 
numerical distance was far between newly learned artificial symbols 
with numerical meanings (Merkley, Shimi, & Scerif, 2016). In addi-
tion, two other studies found no N1 amplitude differences between 
close or far conditions with neither nonsymbolic nor symbolic num-
bers (Hyde & Spelke, 2009; Libertus et al., 2007). Instead, the N1 
amplitude seemed to be only modulated by the size of small nonsym-
bolic numbers (Hyde & Spelke, 2009; Libertus et al., 2007). When 

TABLE  2 The Trial Type effect on the N1 and P2p component in the adjusted and unadjusted analyses

ERP component Adjustment Condition Mean SE F n p η2

N1 (130–200 ms) Unadjusted Match 3.71 0.30 1.67 55 .20 0.03

Mismatch 3.22 0.33

Adjusted Match −0.19 0.37 4.93 55 .03* 0.084

Mismatch −0.647 0.33

P2p (200–250 ms) Unadjusted Match 3.41 0.27 1.275 55 .26 0.023

Mismatch 3.52 0.28

Adjusted Match 3.71 0.30 3.03 55 .087† 0.053

Mismatch 3.22 0.33

*p < .05; †p < .1.
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nonsymbolic numbers were in the small number range (<5 dots), the 
N1 amplitude decreases as number increases. But the N1 amplitude 
was not modulated by large nonsymbolic quantities. As mentioned 
earlier, the dot quantities in our study were exactly the same across 
match and mismatch trials. Thus, the N1 amplitude differences can-
not be attributed to any perceptual differences between the non-
symbolic components of our stimuli. However, we were unable to 
also control for the perceptual features of the Arabic numerals in 
our stimuli. Yet, we did not see any differences between match 
and mismatch conditions prior to adjusting for estimation biases, 
which suggests that the N1 amplitude differences observed after 
the adjustment cannot be attributed to the perceptual differences in 
Arabic numerals either.

In general, the N1 component is well known for its role in visual 
attention (Hillyard & Anllo-Vento, 1998; Mangun, 1995) and dis-
crimination processes (Vogel & Luck, 2000). It is possible that the 
adjusted mismatch trials attracted more attention compared to ad-
justed match trials. Of note, the N1 amplitude did not show any dif-
ferences between unadjusted match and mismatch trials, suggesting 
that, if any attention was involved, it was related to the perceived 
mismatch. This possibility needs further examination.

So far, we have shown that the N1 and P2p amplitude differ-
ences observed in our study are not likely due to perceptual features 
of the dot quantities or Arabic digits. However, the number of match 
and mismatch trials in our task was not balanced, especially after ad-
justment. Hence, we cannot rule out the possibility that our ERP dif-
ferences may be due to the imbalance between match and mismatch 
trials. In fact, research that investigates general visual mismatch ef-
fects in non-numerical visual domains revealed ERP differences in 
similar ERP components as the N1 and P2p in our study (Stefanics 
& Czigler, 2015). These ERP differences are typically evoked by a 
visual mismatch paradigm that consists of a stream of stimuli with 
different proportions of standard and deviant (oddball) stimuli. The 
stimuli vary from basic visual stimuli, such as shapes and gratings, 
to complex visual stimuli, such as faces. The general finding is that 
less frequent deviant stimuli are typically associated with a lower 
ERP amplitude than more frequent standard stimuli over bilateral 
occipital and occipito-parietal sites in two components similar to the 
N1 and P2p around 150–250 ms poststimulus (Heslenfeld, 2003). 
Researchers argue that this visual mismatch effect reflects predic-
tion errors because the deviant stimuli are presented less frequently 
than standard stimuli. In the visual mismatch paradigm, participants 
adapt to the more frequent standard stimuli and generate a predic-
tion favoring the standard stimuli. If this prediction is violated, brain 
activity changes resulting in the observed ERP differences.

One study (Hsu & Szücs, 2011) examined such mismatch effect 
in the numerical processing domain. In this study, the authors pre-
sented two Arabic numerals simultaneously to adult participants and 
asked participants to judge whether the two numerals in a trial were 
the same or not. Two-thirds of their total trials were mismatch trials, 
and one-third was match trials. Thus, the match trials were the less 
frequent/deviant condition and the mismatch trials were the more 
frequent/standard condition. Similar to the visual mismatch effect, 

Hsu and Szücs found that the match (deviant) trials elicited lower 
ERP amplitude within the 236–328 ms time window over bilateral 
occipito-parietal sites, suggesting that a general mismatch detection 
mechanism might have been activated rather than a number-specific 
one.

In our study, we presented one-third match trials and two-thirds 
mismatch trials. The adjustment changed the number of match and 
mismatch trials but did not reverse the proportion of the two types 
of trials. Therefore, similar to Hsu and Szücs’ (2011) study, after the 
adjustment the mismatch trials were the standard condition and 
the match trials were the deviant condition in our study. Thus, it is 
possible that participants predicted that a numerical mismatch was 
more likely to occur. However, unlike in visual mismatch paradigms in 
general and Hsu and Szücs’ (2011) study in particular where the less 
frequent stimulus elicits the more negative ERP amplitude, we ob-
served more positive amplitudes for adjusted match (less frequent) 
than adjusted mismatch (more frequent) trials during the N1 and P2p 
time windows. This direction of the mismatch effect suggests that 
our finding may not reflect a general mismatch detection process. 
Instead, we hypothesize that it reflects the detection of numerically 
mismatching information across two different number formats.

4.3 | The role of the nonsymbolic underestimation 
bias for symbolic integration

Previous studies found that large quantities are likely to be under-
estimated (Izard & Dehaene, 2008; Krueger, 1982, 1984; Libertus 
et al., 2016; Odic et al., 2015). We replicate this underestimation bias 
in the behavioral nonsymbolic number estimation task. Importantly, 
we found that it was critical to take estimation biases into account 
to observe an integration effect in our ERP task. Before adjusting 
for each participant’s estimation biases, we did not observe any 
differences between match and mismatch trials in the N1 or P2p 
components. However, after adjusting for individual differences in 
participants’ estimates of nonsymbolic dot quantities, significant 
ERP differences emerged.

It is critical for future studies on symbolic integration to consider 
these underestimation biases in conjunction with other paradigms 
such as explicit number comparisons using different numerical for-
mats or fMRI adaptation paradigms. In addition, it is important to 
further examine the origins and development of the underestimation 
bias for a more thorough understanding of its potential influence on 
the integration between the ANS and SNS across the life span.

4.4 | Limitations and future directions

One limitation of the current study relates to the order in which the 
participants completed our tasks. The behavioral estimation task was 
always administered before the EEG passive viewing task. This order 
could prime the participants to integrate nonsymbolic and symbolic 
stimuli in the following passive viewing task. Thus, it is possible that 
the ERP integration effect between nonsymbolic and symbolic num-
bers may not have been entirely spontaneous. However, we did not 
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provide any feedback in the estimation task and hence there was no 
explicit way for the participants to calibrate their estimation per-
formance. Further studies should reverse the task order to examine 
whether it had an impact on participants’ integration effects.

In previous studies using EEG/ERP to study numerical cognition, 
posterior electrodes have been found to be related to numerical pro-
cessing. In our study, we selected our ROIs based on these studies 
(Hyde & Spelke, 2009; Libertus et al., 2007) and found the symbolic 
integration effect in these ROIs. Given that these posterior sites 
are spatially close to parietal cortex and the fact that parietal cor-
tex, especially the IPS, has been implicated in numerical processing 
in other studies (Ansari et al., 2005; Fias et al., 2003; Piazza et al., 
2004), it is tempting to link our findings to the function of parietal 
cortex. Yet, the spatial resolution of the EEG/ERP method constrains 
the power to make such inferences. Future studies should consider 
adopting methods that have both high spatial and temporal resolu-
tion. As numerical processing in the parietal cortex does not involve 
many subcortical structures, magnetoencephalography (MEG) could 
be beneficial to study the symbolic integration at the cortical level. 
Another potential possibility is to use an intracranial EEG method. 
Finally, a third way to test the involvement of parietal cortex is to 
incorporate lesion studies. If bilateral parietal cortices are involved 
in parallel but functionally different numerical processing, then pa-
tients with brain damage in unilateral parietal cortex might exhibit 
different patterns in their ERP waveforms in passive viewing tasks 
such as that used in our study. For example, patients with left hemi-
sphere lesion might lack the symbolic integration effect in the N1 
time window over left posterior sites.

Another limitation of the present study is that we concentrated 
our ERP analysis on the N1 and P2p time windows and our poste-
rior ROIs. There were other time windows and electrodes where the 
graphed data present some evidence of the symbolic integration ef-
fect. For example, in Figure 2c,d, the waveforms for match and mis-
match condition separate in the 300-  to 400-ms time window. In 
Figure 2e,f, there are electrodes located in the central regions that 
show the symbolic integration effect. Future analyses are needed to 
address the possibility of integration effects in other time windows 
and at other locations.

5  | CONCLUSION

The present study tested the integration between nonsymbolic and 
symbolic numerical formats in the adult brain. After adjusting for 
participants’ estimation biases inherent to the nonsymbolic format, 
we found greater ERP amplitudes for trials in which the symbolic 
and perceived nonsymbolic numerical information matched than in 
trials where this information did not match. This neural symbolic 
integration effect emerged around 130 ms poststimulus (N1 ERP 
component) over bilateral posterior scalp sites. Our findings sug-
gested that the integration between the nonsymbolic and symbolic 
numerical information occurs rapidly but is best observed when 
perceived rather than veridical quantities are taken into account.
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